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Nelson & Siegel (1987) use (the solution of) the nonhomogeneous second order linear diffe-

rential equation below

r̈(m) +

[
τ1 + τ2
τ1τ2

]
ṙ(m) +

1

τ1τ2
r(m) = a0. (1)

First we will assume τ1 6= τ2 and r(m) = epm such as

ṙ = pepm,

r̈ = p2epm,

therefore

p2epm +

[
τ1 + τ2
τ1τ2

]
pepm +

1

τ1τ2
epm =0,

epm
(
p2 +

[
τ1 + τ2
τ1τ2

]
p+

1

τ1τ2

)
=0,

p2 +

[
τ1 + τ2
τ1τ2

]
p+

1

τ1τ2
=0, (2)

a well known functional form, where p is a constant and (2) is the corresponding characteristic

polynomial of (1). We can use the quadratic formula to find the roots of (2)

∆ =

[
τ1 + τ2
τ1τ2

]
− 4

1

τ1τ2
=

(τ1 + τ2)
2 − 4(τ1τ2)

(τ1τ2)2
=

(τ1 − τ2)2

(τ1τ2)2
,

p =−
τ1+τ2
τ1τ2
±
√

∆

2
,

p =−
τ1+τ2
τ1τ2
± τ1−τ2

τ1τ2

2
, p1 = − 1

τ1
, and p2 = − 1

τ2
.

r1 =e−m/τ1 , and r2 = e−m/τ2 .

We found two solutions. Are they the more general solutions? Not yet. If p1 and p2 are real

and unequal roots of the characteristic equation, which means ∆ > 0, and if k1 and k2 are

constants, a general solution of the corresponding homogeneous equation is

r(m) = β0 + β1e
−m/τ1 + β2e

−m/τ2 , (3)
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where β1 and β2 are constants, and β0=a0τ1τ2 is a particular solution of the nonhomogene-

ous differential equation (1). The equation (3) is presented in the beginning by Nelson &

Siegel (1987). We need three initials conditions to solve this differential equation. Check it �

On the other hand, a more parsimonious model is given by the solution equation for the

case of equal roots. We assume τ1 = τ2 = τ , then (1) and (2) become respectively

r̈ +
2

τ
ṙ +

1

τ 2
r =a0, (4)

p2 +
2τ

τ 2
p+

1

τ 2
=0,

∆ =0, and p = −1

τ
.

Thus r(m) = epm is not a solution as seen before. Check it with initials conditions. We can

use a technique called reduction of order. Then we guess a second solution.

r =v(m)e−m/τ , (5)

ṙ =v̇e−m/τ − 1

τ
ve−m/τ , (6)

r̈ =v̈e−m/τ − 1

τ
v̇e−m/τ − 1

τ
v̇e−m/τ +

1

τ 2
ve−m/τ ,

=v̈e−m/τ − 2

τ
v̇e−m/τ +

1

τ 2
ve−m/τ , (7)

where v(m) is an arbitrary function. Plugging (5)-(7) in (4) leads to the equation

v̈e−m/τ − 2

τ
v̇e−m/τ +

1

τ 2
ve−m/τ +

2

τ

[
v̇e−m/τ − 1

τ
ve−m/τ

]
+

1

τ 2
ve−m/τ =0,

e−m/τ
(
v̈ − 2

τ
v̇ +

1

τ 2
v +

2

τ
v̇ − 2

τ 2
v +

1

τ 2
v

)
=0,

e−m/τ v̈ =0,

v̈ =0,

therefore

v̇ =C2,

v =mC2 + C1. (8)
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Our solution is some arbitrary function v(m) times e−m/τ . Thus plugging (8) in (5)

r =v(m)e−m/τ ,

=(mC2 + C1)e
−m/τ ,

=C2me
−m/τ + C1e

−m/τ .

If p1 and p2 are real and equal roots of the characteristic equation, which means ∆ = 0, a

general solution of the corresponding homogeneous equation is

r(m) = β0 + β1e
−m/τ + β2(m/τ)e−m/τ , (9)

where C2=β2(1/τ), C1=β1, and β0=a0τ1τ2 is a particular solution of the nonhomogeneous

differential equation (4). Then we have the forward rate curve in Nelson & Siegel (1987)

notation - equation (1) in the paper. �

Before derive the equation (2) in Nelson & Siegel (1987), we have to fix ideas and establish

notation by introducing three key theoretical constructs and the relationships among them:

the discount curve, the forward curve, and the yield curve. Let Pt(m) denote the price of a

m-period discount bond, i.e., the present value at time t of $1 receivable m periods ahead,

and let Rt(m) denote its continuously compounded zero-coupon nominal yield to maturity.

From the yield curve we obtain the discount curve,

Pt(m) = e−mRt(m),

and from the discount curve we obtain the instantaneous (nominal) forward rate curve (after

some transformations),

lnPt(m) = ln e−mRt(m),

lnPt(m) = −mRt(m) ln e,

d

dm
[lnPt(m)] =

d

dm
[mRt(m)],

− Ṗt(m)

Pt(m)
= Rt(m) +mṘt(m),

rt(m) = − Ṗt(m)

Pt(m)
.

The relationship between the yield to maturity and the forward rate is therefore

Rt(m) =
1

m

∫ m

0

rt(x)dx, (10)
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which implies that the zero-coupon yield is an equally-weighed average of forward rates.

Given the yield curve or forward curve, we can price any coupon bond as the sum of the

present values of future coupon and principal payments.

In practice, yield curves, discount curves and forward curves are not observed. Instead,

they must be estimated from observed bond prices. At any given time, we can have a large

set of (Fama-Bliss unsmoothed for instance) yields, to which we fit a parametric curve for

purposes of modeling and forecasting. We are studying the forward rate curve functional

form in Nelson & Siegel (1987). Plugging (9) in (10) the correspondent yield curve is

R(m) =
1

m

∫ m

0

β0 + β1e
−x/τ + β2(x/τ)e−x/τdx,

=
1

m

∫ m

0

β0dx︸ ︷︷ ︸
A

+
1

m

∫ m

0

β1e
−x/τdx︸ ︷︷ ︸

B

+
1

m

∫ m

0

β2(x/τ)e−x/τdx︸ ︷︷ ︸
C

,

A =
1

m

{[
xβ0 − xβ0

]∣∣∣∣∣
m

0

}
=

1

m
mβ0

= β0. (A1)

B =
β1
m

∫ m

0

e−x/τdx =
β1
m

{[
− τe−x/τ + τe−x/τ

]∣∣∣∣∣
m

0

}
= −β1

τ

m
e−m/τ + β1

τ

m

=
β1
m/τ

− β1e
−m/τ

m/τ

= β1

[
1− e−m/τ

m/τ

]
. (B1)
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C =
β2
m

∫ m

0

(x/τ)e−x/τdx, integration by parts:

∫
fġ = fg −

∫
ḟ g,

= −x
τ
τe−x/τ −

∫
−1

τ
τe−x/τdx = −xe−x/τ − τe−x/τ

=
β2
m

{[
− τe−x/τ − xe−x/τ −

(
− τe−x/τ − xe−x/τ

)]∣∣∣∣∣
m

0

}
,

= −β2
τ

m
e−m/τ − β2

m

m
e−m/τ + β2

τ

m

= β2

[
1− e−m/τ

m/τ

]
− β2e−m/τ . (C1)

Therefore in Nelson & Siegel (1987) notation

R(m) = β0 + (β1 + β2)

[
1− e−m/τ

m/τ

]
− β2e−m/τ . (11)

a convenient and parsimonious three-component exponential approximation - equation (2)

in the paper �

After some transformations, the function becomes

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
, (12)

a well known functional form, where β1,t, β2,t, and β3,t are latent dynamic factors, τ = m is

maturity, and λ = 1/τ is the parameter which governs the exponential decay rate.
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